A Variational Framework for Single Image Dehazing
نویسندگان
چکیده
Images captured under adverse weather conditions, such as haze or fog, typically exhibit low contrast and faded colors, which may severely limit the visibility within the scene. Unveiling the image structure under the haze layer and recovering vivid colors out of a single image remains a challenging task, since the degradation is depth-dependent and conventional methods are unable to handle this problem. We propose to extend a well-known perception-inspired variational framework [1] for the task of single image dehazing. The main modification consists on the replacement of the value used by this framework for the grey-world hypothesis by an estimation of the mean of the clean image. This allows us to devise a variational method that requires no estimate of the depth structure of the scene, performing a spatially-variant contrast enhancement that effectively removes haze from far away regions. Experimental results show that our method competes well with other stateof-the-art methods in typical benchmark images, while outperforming current image dehazing methods in more challenging scenarios.
منابع مشابه
Enhanced Variational Image Dehazing
Images obtained under adverse weather conditions, such as haze or fog, typically exhibit low contrast and faded colors, which may severely limit the visibility within the scene. Unveiling the image structure under the haze layer and recovering vivid colors out of a single image remains a challenging task, since the degradation is depth-dependent and conventional methods are unable to overcome t...
متن کاملA Bayesian Framework for Single Image Dehazing considering Noise
The single image dehazing algorithms in existence can only satisfy the demand for dehazing efficiency, not for denoising. In order to solve the problem, a Bayesian framework for single image dehazing considering noise is proposed. Firstly, the Bayesian framework is transformed to meet the dehazing algorithm. Then, the probability density function of the improved atmospheric scattering model is ...
متن کاملImproving Dark Channel Prior for Single Image Dehazing
This paper proposes an improved dark channel prior for removing haze from images. Dark channel prior is an effective method for removing haze. Dark channel is an image in the same size as the hazy image which is obtained by dividing the RGB images into windows and for each window, the minimum of each R, G and B channels are calculated. Then again the minimum of these three values is calculated ...
متن کاملSingle Image Dehazing Algorithm Based on Dark Channel Prior and Inverse Image
The sky regions of foggy image processed by all the existing conventional dehazing methods are degraded by color distortion and severe noise. This paper proposes an improved algorithm which combines dark channel prior and inverse image. We first invert the foggy image, and then estimate the transmission of the inverse image. At last, compared with the non-inversed transmission, the larger value...
متن کاملLearning Aggregated Transmission Propagation Networks for Haze Removal and Beyond
Single image dehazing is an important low-level vision task with many applications. Early researches have investigated different kinds of visual priors to address this problem. However, they may fail when their assumptions are not valid on specific images. Recent deep networks also achieve relatively good performance in this task. But unfortunately, due to the disappreciation of rich physical r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014